起点技术博客 数据库 MySQL 分表优化试验代码

MySQL 分表优化试验代码

我们的项目中有好多不等于的情况。今天写这篇文章简单的分析一下怎么个优化法。
这里的分表逻辑是根据t_group表的user_name组的个数来分的。
因为这种情况单独user_name字段上的索引就属于烂索引。起不了啥名明显的效果。

1、试验PROCEDURE.
DELIMITER $$
DROP PROCEDURE `t_girl`.`sp_split_table`$$
CREATE PROCEDURE `t_girl`.`sp_split_table`()
BEGIN
declare done int default 0;
declare v_user_name varchar(20) default \’\’;
declare v_table_name varchar(64) default \’\’;
— Get all users\’ name.
declare cur1 cursor for select user_name from t_group group by user_name;
— Deal with error or warnings.
declare continue handler for 1329 set done = 1;
— Open cursor.
open cur1;
while done 1
do
fetch cur1 into v_user_name;
if not done then
— Get table name.
set v_table_name = concat(\’t_group_\’,v_user_name);
— Create new extra table.
set @stmt = concat(\’create table \’,v_table_name,\’ like t_group\’);
prepare s1 from @stmt;
execute s1;
drop prepare s1;
— Load data into it.
set @stmt = concat(\’insert into \’,v_table_name,\’ select * from t_group where user_name = \’\’\’,v_user_name,\’\’\’\’);
prepare s1 from @stmt;
execute s1;
drop prepare s1;
end if;
end while;
— Close cursor.
close cur1;
— Free variable from memory.
set @stmt = NULL;
END$$

DELIMITER ;
2、试验表。
我们用一个有一千万条记录的表来做测试。

mysql> select count(*) from t_group;
+———-+
| count(*) |
+———-+
| 10388608 |
+———-+
1 row in set (0.00 sec)

表结构。
mysql> desc t_group;
+————-+——————+——+—–+——————-+—————-+
| Field | Type | Null | Key | Default | Extra |
+————-+——————+——+—–+——————-+—————-+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| money | decimal(10,2) | NO | | | |
| user_name | varchar(20) | NO | MUL | | |
| create_time | timestamp | NO | | CURRENT_TIMESTAMP | |
+————-+——————+——+—–+——————-+—————-+
4 rows in set (0.00 sec)

索引情况。

mysql> show index from t_group;
+———+————+——————+————–+————-+———–+————-+———-+——–+——+————+———+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment |
+———+————+——————+————–+————-+———–+————-+———-+——–+——+————+———+
| t_group | 0 | PRIMARY | 1 | id | A | 10388608 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_user_name | 1 | user_name | A | 8 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_combination1 | 1 | user_name | A | 8 | NULL | NULL | | BTREE | |
| t_group | 1 | idx_combination1 | 2 | money | A | 3776 | NULL | NULL | | BTREE | |
+———+————+——————+————–+————-+———–+————-+———-+——–+——+————+———+
4 rows in set (0.00 sec)

PS:
idx_combination1 这个索引是必须的,因为要对user_name来GROUP BY。此时属于松散索引扫描!当然完了后你可以干掉她。
idx_user_name 这个索引是为了加快单独执行constant这种类型的查询。
我们要根据用户名来分表。

mysql> select user_name from t_group where 1 group by user_name;
+———–+
| user_name |
+———–+
| david |
| leo |
| livia |
| lucy |
| sarah |
| simon |
| sony |
| sunny |
+———–+
8 rows in set (0.00 sec)

所以结果表应该是这样的。
mysql> show tables like \’t_group_%\’;
+——————————+
| Tables_in_t_girl (t_group_%) |
+——————————+
| t_group_david |
| t_group_leo |
| t_group_livia |
| t_group_lucy |
| t_group_sarah |
| t_group_simon |
| t_group_sony |
| t_group_sunny |
+——————————+
8 rows in set (0.00 sec)

3、对比结果。

mysql> select count(*) from t_group where user_name = \’david\’;
+———-+
| count(*) |
+———-+
| 1298576 |
+———-+
1 row in set (1.71 sec)

执行了将近2秒。

mysql> select count(*) from t_group_david;
+———-+
| count(*) |
+———-+
| 1298576 |
+———-+
1 row in set (0.00 sec)
几乎是瞬间的。

mysql> select count(*) from t_group where user_name \’david\’;
+———-+
| count(*) |
+———-+
| 9090032 |
+———-+
1 row in set (9.26 sec)
执行了将近10秒,可以想象,这个是实际的项目中是不能忍受的。
mysql> select (select count(*) from t_group) – (select count(*) from t_group_david) as total;
+———+
| total |
+———+
| 9090032 |
+———+
1 row in set (0.00 sec)
几乎是瞬间的。

我们来看看聚集函数。
对于原表的操作。

mysql> select min(money),max(money) from t_group where user_name = \’david\’;
+————+————+
| min(money) | max(money) |
+————+————+
| -6.41 | 500.59 |
+————+————+
1 row in set (0.00 sec)
最小,最大值都是FULL INDEX SCAN。所以是瞬间的。
mysql> select sum(money),avg(money) from t_group where user_name = \’david\’;
+————–+————+
| sum(money) | avg(money) |
+————–+————+
| 319992383.84 | 246.417910 |
+————–+————+
1 row in set (2.15 sec)
其他聚集函数的结果就不是FULL INDEX SCAN了。耗时2.15秒。

对于小表的操作。
mysql> select min(money),max(money) from t_group_david;
+————+————+
| min(money) | max(money) |
+————+————+
| -6.41 | 500.59 |
+————+————+
1 row in set (1.50 sec)
最大最小值完全是FULL TABLE SCAN,耗时1.50秒,不划算。以此看来。
mysql> select sum(money),avg(money) from t_group_david;
+————–+————+
| sum(money) | avg(money) |
+————–+————+
| 319992383.84 | 246.417910 |
+————–+————+
1 row in set (1.68 sec)

取得这两个结果也是花了快2秒,快了一点。

我们来看看这个小表的结构。
mysql> desc t_group_david;
+————-+——————+——+—–+——————-+—————-+
| Field | Type | Null | Key | Default | Extra |
+————-+——————+——+—–+——————-+—————-+
| id | int(10) unsigned | NO | PRI | NULL | auto_increment |
| money | decimal(10,2) | NO | | | |
| user_name | varchar(20) | NO | MUL | | |
| create_time | timestamp | NO | | CURRENT_TIMESTAMP | |
+————-+——————+——+—–+——————-+—————-+
4 rows in set (0.00 sec)

明显的user_name属性是多余的。那么就干掉它。
mysql> alter table t_group_david drop user_name;
Query OK, 1298576 rows affected (7.58 sec)
Records: 1298576 Duplicates: 0 Warnings: 0

现在来重新对小表运行查询

mysql> select min(money),max(money) from t_group_david;
+————+————+
| min(money) | max(money) |
+————+————+
| -6.41 | 500.59 |
+————+————+
1 row in set (0.00 sec)

此时是瞬间的。
mysql> select sum(money),avg(money) from t_group_david;
+————–+————+
| sum(money) | avg(money) |
+————–+————+
| 319992383.84 | 246.417910 |
+————–+————+
1 row in set (0.94 sec)

这次算是控制在一秒以内了。

mysql> Aborted

小总结一下:分出的小表的属性尽量越少越好。大胆的去干吧。

本文来自网络,不代表起点技术博客立场,转载请注明出处:https://taipingswsl.com/archives/162772

作者: 吐鲁番

发表回复

您的电子邮箱地址不会被公开。

联系我们

联系我们

0898-88881688

在线咨询: QQ交谈

邮箱: email@wangzhan.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

关注微博
返回顶部